

FlexOffer specification
26/07/2023

FlexOffer specifications

Introduction

FlexOffer (FO) is a representation of energy flexibility, which has the characteristics of i)

being device-independent, ii) modeling flexibility with high accuracy, and iii) being scalable

with respect to long time horizons and aggregation of many devices. This work has the

purpose of defining the specifications for FOs in a general context. FlexOffer (FO) is a

representation of energy product, which beside the trading market products covers also the

energy flexibility. It has the characteristics of the minimum and maximum available amount

of energy for consumption and production. FOs consider time as discrete, and divided in

regular intervals called time slices. The duration of a time slice is usually 15 minutes, and is

defined in the parameter numSecondsPerInterval. The FO concept was first proposed in the

MIRABEL project, further developed in the TOTALFLEX project and demonstrated at large

scale on the GOFLEX project. It is moreover demonstrated in FEVER, GIFT, edgeFlex,

domos, LeapRe projects. A single FO typically includes:

• Energy profile, having a number of discrete slices, specifies electricity consumption

and production options over a device’s active period of operation;

• Time flexibility interval specifies a time period in which device’s operation (profile)

can be advanced or retarded.

• Default profile specifies a preferred / locally optimal consumption profile (a baseload)

• Price data specifies (discomfort) prices, e.g., associated to deviations from the default

profile. Additionally the FO protocol supports the energy flow description of energy

reservoirs like batteries, EVs and others with the advanced parameters describing total,

dependency and uncertain constraints. This document is organized as follows. Chapter

1 describes how the FO protocol works, the actors involved in creation and

management of FOs, the processes FOs go through, and the life cycle of an FO.

Chapter 2 describes different types of FOs that can be generated and the energy

constraints defining them. It is important to note that FlexOffers represent energy and

not power: it is a convention decided because all slices have a duration. It can be

converted to average power per slice if needed. Moreover, the metering is done on the

energy.

Chapter 1: FlexOffer protocol

1.1 Flexibility and main actors

This work describes FOs, which are a representation for energy flexibility. We describe

energy flexibility as the capability to change the time and amount of energy consumption

from a grid actor. Flexibility represented by FOs can go through multiple processes: it can be

optimized, aggregated and traded. We now describe all the actors that can be involved in these

processes.

• Prosumer: owns the flexible resources that deliver flexibility. FOs are generated at

prosumer level by an automatic agent, and the same agent will execute FO schedules

once they are received back by the prosumer.

https://github.com/flexoffer/flexoffer-specifications/blob/main/Specifications.md#flexoffer-specifications
https://github.com/flexoffer/flexoffer-specifications/blob/main/Specifications.md#introduction
https://github.com/flexoffer/flexoffer-specifications/blob/main/Specifications.md#chapter-1-flexoffer-protocol
https://github.com/flexoffer/flexoffer-specifications/blob/main/Specifications.md#11-flexibility-and-main-actors

• Aggregator: collects FOs from prosumers. An aggregator is capable of aggregating,

optimizing and disaggregating FOs, and can also sell FOs to the flexibility market.

• TSO: short for Transmission System Operator, it is responsible for operating,

maintening and developing the transmission system in a given area. It is a buyer on the

flexibility market.

• DSO: short for Distribution System Operator, it is the grid operator with the

responsbility for medium to low voltage power distribution in a geographical area. It is

a buyer on the flexibility market.

• BRP: short for Balance Responsible Party, it has the responsibility to secure balance

between energy generation and consumption in a geographical area. It is a buyer on

the flexibility market.

1.2 Flexibility operations

As mentioned in Section 1.1, flexibility represented by FOs can undergo several processes.

This section will describe them in further detail.

1.2.1 Optimization

Flexibility can be used for optimization towards several objectives, such as minimizing

energy costs or CO2 emissions, maximizing renewable energy consumption, peak shaving,

matching demand for power with supply (demand response), ancillary services and avoiding

local grid congestions. In some cases, those objectives are related, e.g. energy prices may vary

in order to encourage demand-response. Flexibility also enables prosumers to participate to

spot (day-ahead, intraday) and balancing energy markets, either on their own or joining their

flexibility with other prosumers. An FO is described by a set of constraints over energy

variables within a given time horizon, that is, the number of time slices that the FO is

considering. Optimizing an FO means creating an objective function over the energy and time

variables, and finding the minimum of that function by optimization, which constraints over

the energy variables are given by the FO.

1.2.2 Aggregation

Prosumers who can only offer small amounts of flexibility may be unable to participate in the

energy market alone, as they would not meet the threshold for the minimum bid size, which

for example is 5MW in Switzerland. They can, however, do so by combining together their

flexibility: this process is called aggregation. An important property of FOs is that they can be

aggregated. This means that given a number N of FOs, it is possible to generate M ? N FOs

which together represent the combined flexibility of the original N FOs, with some losses.

Different types of FOs have different aggregation mechanisms, which however are all

backwards-compatible: in other words, FOs of different types can always be aggregated,

provided that aggregation makes sense in the first place (i.e. they refer to the same time span).

1.2.3 Disaggregation

The importance of the aggregation process has been described in the previous subsection.

Aggregated flexibility can be traded as if it belongs to one single entity. After that, its

assignment can be dispatched to each user: this process is called disaggregation.

Disaggregation can be seen as the inverse process of aggregation; however, there is a specific

https://github.com/flexoffer/flexoffer-specifications/blob/main/Specifications.md#12-flexibility-operations
https://github.com/flexoffer/flexoffer-specifications/blob/main/Specifications.md#121-optimization
https://github.com/flexoffer/flexoffer-specifications/blob/main/Specifications.md#122-aggregation
https://github.com/flexoffer/flexoffer-specifications/blob/main/Specifications.md#123-disaggregation

conceptual difference. Aggregation collects many representations of flexibility and converts

them into a small number of representations of flexibility; disaggregation converts a schedule

for energy consumption into many schedules of energy consumption.

1.2.4 Flexibility trading

It is also possible to trade flexibility in the respective market.

After Flex-Offer generation at the Prosumer-side, the Flex-Offer is typically sent to a

receiving party, potentially, some utility company, BRP, or Aggregator, where is takes part in

flexibility negotiation, planning, control, and billing processes, shown in Figure 1.1.

Figure 1.1: A schematic description of the FO life-cycle.

• Negotiation process The Flex-Offer can be accepted, e.g., if all of its attributes are

valid and offered flexibility is valuable for the receiving party. On the other hand, the

Flex-Offer can be rejected, e.g., due to some validation errors, or due to unacceptable

price or energy, which then requires updating and resending the Flex-Offer or

operating Prosumer processes under the default profile (baseload), e.g. not using the

Flex-Offer.

• Planning process As mentioned earlier, the Flex-Offer can be decomposed into a

number of decision variables and constraints, an used in actor-specific optimization

and planning process. This results into one or more Flex-Offer schedules, i.e.,

assignments, which respect all Flex-Offer constraints and can be executed by the

Prosumer.

• Control process Each Flex-Offer schedule (assignment) sent to a Prosumer is

executed, starting at the given starting time, such that prescribed energy amounts are

consumed or produced at subsequent time slices.

• Billing process Prosumer is rewarded by the flex-offer receiving party for its offered

flexibility (Flex-Offers). Typical message exchange between the Prosumer and Flex-

Offer receiving party, covering the negotiation and planning processes, is presented

below.

1.3 FlexOffer life cycle

https://github.com/flexoffer/flexoffer-specifications/blob/main/Specifications.md#124-flexibility-trading
https://github.com/flexoffer/flexoffer-specifications/blob/main/Specifications.md#13-flexoffer-life-cycle
https://user-images.githubusercontent.com/48982460/225643625-2f533190-8b79-4401-906d-efdb050c5b83.png

Figure 1.2: A schematic description of the FO life-cycle.

Figure 1.2 shows the life-cycle of an FO. Two main parties are involved: the prosumer, who

generates and executes the FO, and the aggregator, who processes and issues schedules for the

FO. The tasks on the prosumer’s side are performed automatically by an agent, which

operates according to the prosumer’s requirements. First, the prosumer agent forecasts

flexibility for the devices, and generates FOs according to that. Each FO is then sent to the

aggregator, which will determine if the FO is useful for its needs, decides whether to accept

the FO or to reject it (e.g., due to some validation errors, or due to unacceptable price or

energy) and informs the prosumer of the response. If the FO is not accepted, it is not executed

and the cycle ends here. Otherwise, the aggregator processes it (e.g. aggregating it with other

FOs, performing optimization), and establishes a schedule for each FO. FO schedules are then

sent back to the prosumer agent, which will execute them by controlling the devices.

The scheduling consists of the assignment deadline control (provided by flexibility manager -

FMAN - component) and flex-offer matching (provided by flexibility market - FMAR -

component). The FMAR component provides price based optimisation at combining the

production with consumption flex-offers. If the matching could not be found till the

assignment deadline then the flex-offer is rejected and no schedule is generated.

1.4 FlexOffer message

This section has the purpose to show how a JSON message for an FO is made, and which

attributes are considered for it. This message is the core of the FO protocol. It is exchanged

between the FO issuer and the FO receiving party. A range of optional attributes can be used

to give indications on constraints and to be used in the different steps of the flexibility trading

process. Depending on the attributes used, it can therefore be used to

• Offer a flexibility bid

• Accept or refuse a flexibility offer

• Assign a flexibility It offers a common representation of all flexibilities, based on time

slices and optional constraints. FOs define energy flexibility by specifying lower and

upper bounds for energy, which identify the minimum and maximum amount of

energy that can be produced/consumed at the considered time slice. Positive values

indicate energy production, negative values indicate energy consumption.

https://github.com/flexoffer/flexoffer-specifications/blob/main/Specifications.md#14-flexoffer-message
https://user-images.githubusercontent.com/48982460/233378720-3fb978e3-92bf-4033-aeb7-c323e8ea04e2.png

Figure 1.4: Messages exchange process

This is an example of a FO message (request):

{

 "flexOffer": [

 {

 "id": "17",

 "state": "offered",

 "stateReason": "initial offer",

 "creationTime": "2017-01-22T05:00:00Z",

 "offeredById": "1023",

 "acceptBeforeTime": "2017-01-22T07:45:00Z",

 "assignmentBeforeTime": "2017-01-22T22:45:00Z",

 "startAfterTime": "2017-01-22T09:00:00Z",

 "startBeforeTime": "2017-02-11T22:00:00Z",

 "numSecondsPerInterval": 900,

 "flexOfferProfileConstraints": [

 {

 "minDuration": 1,

 "maxDuration": 1,

 "energyConstraintList": [

 {

 "lowerBound": -5.1,

 "upperBound": -16.89

 }

],

 "tariffConstraint": {

 "minTariff": 0.03,

 "maxTariff": 0.03

 }

 },

 {

 "minDuration": 1,

 "maxDuration": 1,

 "energyConstraintList": [

 {

 "lowerBound": -5.1,

 "upperBound": 6.89

 }

],

 "tariffConstraint": {

 "minTariff": 0.03,

https://user-images.githubusercontent.com/48982460/233374733-64f43203-af46-45f5-9dc5-a45a65d225e4.png

 "maxTariff": 0.15

 }

 },

 {

 "minDuration": 1,

 "maxDuration": 1,

 "energyConstraintList": [

 {

 "lowerBound": 3.14,

 "upperBound": 3.14

 }

],

 "tariffConstraint": {

 "minTariff": 0.03,

 "maxTariff": 0.03

 }

 },

 {

 "minDuration": 1,

 "maxDuration": 1,

 "energyConstraintList": [

 {

 "lowerBound": 11.89,

 "upperBound": 11.89

 },

 {

 "lowerBound": 2.1,

 "upperBound": 6.89

 },

 {

 "lowerBound": 2.1,

 "upperBound": 6.89

 }

],

 "tariffConstraint": {

 "minTariff": 0.15,

 "maxTariff": 0.15

 }

 }

],

 "defaultSchedule": {

 "startTime": "2017-01-22T22:45:00Z",

 "scheduleSlices": [

 {

 "duration": 1,

 "energyAmount": 0,

 "tariff": 1

 },

 {

 "duration": 1,

 "energyAmount": 0,

 "tariff": 1

 }

]

 }

 }

]

}

This is an example of a FO message (response):

{

 "flexOffer": [

 {

 "id": "123",

 "state": "assigned",

 "stateReason": "assigned",

 "creationTime": "2023-03-28T10:36:52Z",

 "offeredById": "201",

 "internalId": "14561741",

 "flexOfferSchedule": {

 "startTime": "2023-03-30T18:00:00Z",

 "numSecondsPerInterval": 900,

 "scheduleSlices": [

 {

 "duration": 1,

 "energyAmount": "-13342.610307504",

 "tariff": 0.158

 },

 {

 "duration": 1,

 "energyAmount": "-14330.47291966",

 "tariff": 0.0945

 },

 {

 "duration": 1,

 "energyAmount": "-15634.3049937015",

 "tariff": 0.111

 },

 {

 "duration": 1,

 "energyAmount": "-16754.1480817855",

 "tariff": 0.111

 }

]

 }

 }

]

}

In the following table, the attributes included in an FO message are listed.

Attribute Manda

tory

Type Description

id Yes String The ID that identifies the FO

state Yes String State of the FO (initial (only until the offer is

offered)/offered/accepted/rejected/assigned/exe

cuted/invalid/canceled)

stateReason No String Reason for FO state

numSecondsPerIn

terval

No Int Duration in seconds of a time slice (default

value is 900)

creationTime Yes Datetime Absolute time at which the FO has been

created

creationInterval No Integer FO creation Interval calculated as epoch value

for creationTime/numSecondsPerInterval

offeredById Yes String ID of the FO owner

locationID No String ID for representing the location of the FO in

the grid system. If the parameter is not present,

the location can be deducted through the

offeredById parameter.

acceptBeforeTime No Datetime Absolute time before which FO with valid data

must be accepted. Sets the deadline on when a

flex-offer receiving party (e.g., BRP) should

acknowledge successful acceptance or

rejection of the flex-offer. A flex-offer

rejection may occur if, e. g., flex-offer

constraints or other metadata (e.g., prices) are

invalid or inappropriate (e.g., quantities are too

small, prices are too high). If the parameter is

missing no acceptance response is generated

(unless in the case of malformed message,

when the response is returned immediately).

An offer acceptance confirms the logically

correctness of the flex-offer, respecting all

constraints, and indicated that the offer may be

assigned at a latter point in time. Depending on

the use-case, there will be some business

meaning to the acceptance state, defined in the

contract.

acceptBeforeInter

val

No Integer Interval before which FO must be accepted.

assignmentBefore

Time

No Datetime Absolute time before which FO must be

scheduled. Sets the deadlines on when flex-

offer schedule update (assignment) is allowed

to be sent by the flex-offer receiving party

(BRP) to a flex-offer issuing party (flexible

resource). In case the parameter is not present,

the default value is startAfterTime.

assignmentBefore

Start

No Integer May be used instead of

assignmentBeforeTime. Sets the deadlines on

when flex-offer schedule update (assignment)

is allowed to be sent by the flex-offer receiving

party (BRP) to a flex-offer issuing party

(flexible resource). It is expressed relatively

regarding the 'startAt' time in flex offer

schedule. The value

'assignmentBeforeStart':300 means that the

assignment message is sent latest 5 minutes

before the schedule starts the execution. In case

the parameter is not present its value is '0'.

assignmentBefore

Interval

No Integer Interval before which FO must be scheduled.

startAfterTime No Datetime Absolute time after which FO must be

started.The range [startAfterTime,

startBeforeTime] defines the time range within

which the offer can be activated. In case it is

not present, it is assumed to be equal to

‘creationTime’

startAfterInterval No Integer Interval after which FO must be started.

startBeforeTime Yes Datetime Absolute time before which FO must be

started.

startBeforeInterv

al

No Integer Interval before which FO must be started.

endAfterInterval No Integer Interval after which FO execution must end.

The parameters are used when time flexibility

is being described (startAfterTime is not equal

to startBeforeTime) and minDuration is not

equal to maxDuration in FlexOfferSlice

element

endBeforeInterval No Integer Interval before which FO execution must end.

The parameters are used when time flexibility

is being described (startAfterTime is not equal

to startBeforeTime) and minDuration is not

equal to maxDuration in FlexOfferSlice

element

flexOfferProfileC

onstraints

Yes array of

flexOffer

Slice

Constraints for FO profile. A null value or an

empty list means the flexibility removal.

endAfterTime No Datetime Absolute time after which FO execution must

end. The parameters are used when time

flexibility is being described (startAfterTime is

not equal to startBeforeTime) and minDuration

is not equal to maxDuration in FlexOfferSlice

element

endBeforeTime No Datetime Absolute time before which FO execution must

end. The parameters are used when time

flexibility is being described (startAfterTime is

not equal to startBeforeTime) and minDuration

is not equal to maxDuration in FlexOfferSlice

element

flexOfferPriceCon

straints

No array of

priceSlic

e

Constraints for FO price.

defaultSchedule No Schedule

Slice

Default energy consumption and time schedule

of an FO.

powerFactorCons

traint

No List of

paramete

rs

Has two sub-elements: lower, and upper.The

definition of the cos phi range of energy

flexibility in the adapationPotential. It is

defined as pair min, max and default. If not

present it is assumed min = max = 1.0.

totalCostConstrai

nt

No List of

paramete

rs

Has two sub-elements: lower, and upper.

flexOfferProfilTy

pe

No String 'activeEnergy'(default)/'reactiveEnergy'/'voltag

e'

unit No String 'Wh'(default)/'VAh'/'V' – units of the energy

constraint list

multiplier No String 'k'(default), '1', 'M'

Table 1.1: FO attributes and their descriptions.

Here are the descriptions of the different elements mentionned in the table above.

Attribute Mandatory Type Description

lowerBound Yes Float If positive: Minimal produced energy; If negative:

Maximal consumed energy

upperBound Yes Float If positive: Maximal produced energy; If negative:

Minimal consumed energy

Table 1.2: energyConstraintsList element attributes and their descriptions.

Attribute Mandatory Type Description

minprice Yes Float Maximal price to be paid at consumption increase

maxprice Yes Float Minimal price to be received at production increase

Table 1.3: priceConstraint element attributes and their descriptions.

Attribute Mandatory Type Description

startTime Yes Date time Start time of the the price slices time

series

priceSlices Yes Array of

priceSlice

See detailed description in a separate table

Table 1.4: priceConstraintsList element attributes and their descriptions.

Attribute Mandatory Type Description

duration No Integer Duration of the slice in number of intervals- If

absent it is equal to 1

priceConstraint Yes Object See detailed description above

Table 1.5: priceSlice element attributes and their descriptions.

Moreover, several constraints, that can be used to detail the offer, can be added to this

message. They are described in the following chapter.

Chapter 2: FlexOffer constraints

Additionnal parameters can be added, as contraints to the flex offers: ‘totalEnergyConstraint’,

‘subTotalEnergyConstraint’ and 'DependencyEnergyConstraint'. This creates a few different

types of flex offers.

2.1 Running example

In order to show how different types of FOs work, we will define a running example that will

be used through the document. It is important to note that, through this document, we will use

the following conventions:

https://github.com/flexoffer/flexoffer-specifications/blob/main/Specifications.md#chapter-2-flexoffer-constraints
https://github.com/flexoffer/flexoffer-specifications/blob/main/Specifications.md#21-running-example

• FOs will represent energy.

• Positive amounts of energy refer to energy consumed by the prosumer, negative

amounts refer to energy obtained by the prosumer. For our running example, we will

consider a Tesla Powerwall battery. Its capacity is 14 kWh, its maximum charging and

discharging power are both 5 kW, and its round-trip efficiency is 90%. We use one

hour time units, i.e. the battery can either be charged or discharged by an amount up to

5 kWh at each time unit. For describing the functioning of the battery, we use

Coulomb counting [1]. At each time unit t, we write the state of charge (SoC) of the

battery as

Here, SoC(t) is the amount of energy in the battery at time t, expressed in kWh. u(t) is the

amount of energy that the prosumer gives to/receives from the battery at time t, in kWh: u(t)

is positive if the battery is being charged, negative otherwise. u + (t) is max{u(t),0}, u − (t) is

min{u(t),0}. K is a real number that measures how much energy is kept while

charging/discharging the battery: it goes from 0 (all the energy is lost) to 1 (no energy is lost).

SoC min and SoC max are the minimum and maximum state of charge that the battery can

have in kWh, respectively. Lastly, E min and E max are the minimum and maximum amount

of energy (in kWh) that can be taken from/given to the battery in one time unit.

We will consider two cases. In the first one (charging example), SoC(0) = 0 kWh and the

battery can only be charged. In the second one (switching example), SoC(0) = 7 kWh and the

battery can switch between charge and discharge at any time unit.

2.2 Energy slice constraint FO (SFO)

There are many types of constraints that have been used to define FOs. The most simple ones

are start time constraints and slice (energy) constraints. A start time constraint determines the

earliest and latest time unit at which the load can start. An energy constraint establishes, for

each time unit at which the load is operating, the minimum and maximum amount of energy

that can be consumed from that load. This means that for every time unit t, the energy

constraint specifies a lower and an upper bound emin t and emax t such that emin t ≤ e t ≤

emax t . A standard FO (SFO) is an FO whose constraints are all slice constraints. Figure 2.1

shows an example of a slice FO (SFO) for the charging example. There are many possible

ways of generating an SFO: in this case, we want to use all the flexibility available. At each

time unit, a minimum of 0 kWh and a maximum of 5 kWh of energy can be used to charge the

battery; this allows to employ as much flexibility as possible. However, from this

representation, we may generate unfeasible configurations: for example, if 5 kWh are used at

each time unit, 30 kWh will be given in total to the battery, but this is impossible since the

maximum charge amount is 14 kWh.

https://github.com/flexoffer/flexoffer-specifications/blob/main/Specifications.md#22-energy-slice-constraint-fo-sfo
https://user-images.githubusercontent.com/48982460/211337921-74283131-9744-4a46-8f61-d7b903f3e79e.png

Figure 2.1: Example of SFO

2.2.1 FlexOffer message

Section 1.4 describes in detail how the FO message looks like. However, the attribute

FlexOfferProfileConstraints has several sub-attributes, which depend on the type of FO that

has been issued. In this section, we will describe them for an SFO. This is how the

FlexOfferProfileConstraints attribute looks like for an SFO:

"flexOfferProfileConstraints": [{

 "energyConstraintList": [{"lower": 0, "upper": 5}],

 "priceConstraint": {"minPrice": 0.03, "maxPrice": 0.15},

 "minDuration": 1,

 "maxDuration": 1

},{

 "energyConstraintList": [{"lower": 0, "upper": 5}],

 "priceConstraint": {"minPrice": 0.03, "maxPrice": 0.15},

 "minDuration": 1,

 "maxDuration": 1

},{

 "energyConstraintList": [{"lower": 0, "upper": 5}],

 "priceConstraint": {"minPrice": 0.03, "maxPrice": 0.15},

 "minDuration": 1,

 "maxDuration": 1

},{

 "energyConstraintList": [{"lower": 0, "upper": 5}],

 "priceConstraint": {"minPrice": 0.03, "maxPrice": 0.15},

 "minDuration": 1,

 "maxDuration": 1

},{

 "energyConstraintList": [{"lower": 0, "upper": 5}],

https://github.com/flexoffer/flexoffer-specifications/blob/main/Specifications.md#221-flexoffer-message
https://user-images.githubusercontent.com/48982460/211338044-a9704b5d-73f3-4018-9fef-d007d5e2e5c9.png

 "priceConstraint": {"minPrice": 0.03, "maxPrice": 0.15},

 "minDuration": 1,

 "maxDuration": 1

},{

 "energyConstraintList": [{"lower": 0, "upper": 5}],

 "priceConstraint": {"minPrice": 0.03, "maxPrice": 0.15},

 "minDuration": 1,

 "maxDuration": 1

}]

Table 2.1 describes the sub-attributes of the flexOfferProfileConstraints more in detail.

Attribute Mandatory Type Description

energyConstraintsList Yes array of

‘energyConstraints’

Contains the list(s) of energy

constraints for one time unit.

Has two sub-elements:

lower, and upper.

priceConstraint No Object List of price constraints. Has

two elements: minPrice, and

maxPrice.

minDuration No Integer Minimal slice duration in

number of intervals

maxDuration No Integer Maximal slice duration in

number of intervals

Table 2.1: Sub-attributes of flexOfferSlice for SFOs.

2.2.2 Response schedule

Data in ScheduleSlice format has the following sub-elements:

Attribute Mandatory Type Description

Duration No Integer Indicates the duration of the considered slices, in

time units.

EnergyAmount Yes Float Indicates the energy consumption for that slice.

For every discrete interval of an active device

operation, energy amount flexibility is

characterized by a range

price No Float Indicates the price amount for that slice.

Table 2.2: ScheduleSlice data.

An example for this data:

"schedule": {

 "scheduleId": 0,

 "updateId": 0,

 "scheduleSlices": [{"duration": 1, "energyAmount": 2, "price": 0.5},

 {"duration": 1, "energyAmount": 3, "price": 0.5}

 {"duration": 1, "energyAmount": 3, "price": 0.5}

 {"duration": 1, "energyAmount": 0, "price": 0}

 {"duration": 1, "energyAmount": 0, "price": 0}

 {"duration": 1, "energyAmount": 0, "price": 0}],

https://github.com/flexoffer/flexoffer-specifications/blob/main/Specifications.md#222-response-schedule

 "startTime": "2019-04-02T00:00:00.000+0000"

}

2.3 Total energy constraints FlexOffers

Another type of constraint is the total energy constraint (TEC), which specifies the lower (TE

min) and upper (TE max) bounds for the energy that can be consumed over the considered

time horizon. With the notation used before, this means

Figure 2.2: Example of TEC FO

A total energy constraint standard FO (TEC-SFO) is an FO with slice and total energy

constraints. In the charging example, we can define a TEC-SFO by defining an SFO with all

the slices between 0 kWh and 5 kWh, and adding a TEC defined by TE max = 14 kWh, since

the maximum possible charge of the battery is 14 kWh. The prosumer would also usually

define a minimum amount of charge to be obtained during the process, which may be for

example 10 kWh : this would be represented by a TEC defined by TE min = 10 kWh. These

two TECs are shown in Figure 2.2.

2.3.1 FlexOffer Message

Like in the previous subsection, we describe the sub-attributes for flexOfferProfileConstraints

in the case of a TEC-SFO. The only change in comparison to SFOs is that inside

FlexOfferProfileConstraint, we have the sub-attribute totalEnergyConstraint it is an object

https://github.com/flexoffer/flexoffer-specifications/blob/main/Specifications.md#23-total-energy-constraints-flexoffers
https://github.com/flexoffer/flexoffer-specifications/blob/main/Specifications.md#231-flexoffer-message
https://user-images.githubusercontent.com/48982460/211338547-781d628e-af6a-4eda-abd4-d8c579c7c2bf.png
https://user-images.githubusercontent.com/48982460/211338616-f3668509-6e68-48fc-9809-4ea50cb17c5f.png

with two sub-attributes, lower and upper. They indicate the lowest and highest amount of total

consumption for energy respectively.

The part in the JSON message relative to it would be as described below:

"flexOfferProfileConstraints": [{

 "energyConstraintList": [{"lower": 0, "upper": 5}],

 "priceConstraint": {"minPrice": 0.03, "maxPrice": 0.15},

 "minDuration": 1,

 "maxDuration": 1

},{

 "energyConstraintList": [{"lower": 0, "upper": 5}],

 "priceConstraint": {"minPrice": 0.03, "maxPrice": 0.15},

 "minDuration": 1,

 "maxDuration": 1

},{

 "energyConstraintList": [{"lower": 0, "upper": 5}],

 "priceConstraint": {"minPrice": 0.03, "maxPrice": 0.15},

 "minDuration": 1,

 "maxDuration": 1

},{

 "energyConstraintList": [{"lower": 0, "upper": 5}],

 "priceConstraint": {"minPrice": 0.03, "maxPrice": 0.15},

 "minDuration": 1,

 "maxDuration": 1

},{

 "energyConstraintList": [{"lower": 0, "upper": 5}],

 "priceConstraint": {"minPrice": 0.03, "maxPrice": 0.15},

 "minDuration": 1,

 "maxDuration": 1

},{

 "energyConstraintList": [{"lower": 0, "upper": 5}],

 "priceConstraint": {"minPrice": 0.03, "maxPrice": 0.15},

 "minDuration": 1,

 "maxDuration": 1

},

 "totalEnergyConstraint": [{"lower": [10],"upper": [14]}]

]

We can see that it is represented like an SFO, with the addition of the total energy constraint.

Attribute Mandatory Type Description

totalEnergyConstraint Yes Object Contains the total energy constraints.

Bounds the total energy amount

requested or offered within the full

active operation of a flexible

resource. It declares the change of the

SoC at the end of adaptation. Has

two sub-elements: lower, and upper.

subTotalEnergyConstraint Yes Object Describes the available capacity of

energy reservoir for charging (lower)

and discharging (upper) regarding the

SoC at the adaptation start. Has two

sub-elements: 'lower', and 'upper'.

Table 2.3: Additional sub-attribute for TEC-SFOs.

2.4 Dependency FlexOffers

A further type of constraint is the dependent energy constraint. This constraint specifies at

each time unit t a lower and an upper bound on the amount of energy that can be consumed,

depending on the total amount of energy that has been consumed before time unit t. In more

formal terms, this means that there are three real numbers a, b, c such that

A dependency FO (DFO) is an FO with dependency energy constraints. Figure 2.2 shows a

DFO created from the charging example, for the first four time units : for each slice, the x axis

represents the amount of energy used up until that time unit, while the y axis represents the

amount of usable energy at the considered time unit. In this figure, at time t = 1, 2 and 3, the

amount of energy that has been consumed up to that time is 0 kWh, between 0 kWh and 5

kWh, between 0 kWh and 10 kWh respectively, as shown in the x axis. The amount of energy

that the prosumer may consume is always between 0 and 5 kWh, no matter the amount of

energy consumed before, as shown in the y axis. At time t = 4, the amount of energy

consumed up to that time is between 0 kWh and 14 kWh, and the amount that can be

consumed depends on the amount consumed up to that time, as shown in the rightmost part of

Figure 2.3. This constraint should be used for the most advanced forms of flexible resources

(e.g., heat-pumps), where the flexibility changes over time and is dependent on an internal

system state (e.g., temperature).

Figure 2.3: Example of DFO for the charging example.

2.4.1 FlexOffer message

Like in the previous subsection, we describe the sub-attributes for FlexOfferProfileConstraints

in the case of a DFO. Inside FlexOfferProfileConstraints there is the sub-attribute

DependencyEnergyConstraintList: it is a matrix, referred to the considered time unit. It

represents a set of linear constraints which, in turn, represents the dependency energy

constraints. The other attributes are the same as FlexOfferProfileConstraints. However, while

EnergyConstraintsList has sub-attributes lower and higher like in the example before,

DependencyEnergyConstraintsList has only the matrix. The matrix has as many rows as the

number of sides of the polygons, and three columns: if the inequality representing the side is

written as ax + by ≤ c, the row will be |abc|. This is called the H-representation of the slice

[2].

https://github.com/flexoffer/flexoffer-specifications/blob/main/Specifications.md#24-dependency-flexoffers
https://github.com/flexoffer/flexoffer-specifications/blob/main/Specifications.md#241-flexoffer-message
https://user-images.githubusercontent.com/48982460/211339101-70ef06a4-e695-45f1-a90c-5945f69624df.png
https://user-images.githubusercontent.com/48982460/211338987-bce40e98-0240-47ff-b144-6c4752eee4cc.png

Figure 2.4: Example of DFO for the switching example.

In the example of Figure 2.4, the set representing this DFO has four matrices. In Figure 4 we

show a more complex example of DFO, which refers to the switching example from Section

2.1. At each time we can see the dependency between energy used up and energy available:

for t = 1 the energy available is between -5 kWh and 5 kWh, for the following time units it

depends on the amount used before. In all those time units the sum between energy used up to

that moment and energy available is limited by a certain amount; however, this amount

changes depending on the time unit. In particular, the polygon representing the fourth time

unit can be defined by the equations

Where x represents the amount of energy consumed up to time 3 included, and y the amount

of energy that will be consumed at time 4. Those equations can be represented by the matrix

https://user-images.githubusercontent.com/48982460/211339186-6d61bf80-3175-4c73-afed-dc966b02de93.png
https://user-images.githubusercontent.com/48982460/211339280-6460e3b9-9281-4542-8299-a7729ad35615.png

Attribute Mandatory Type Description

DependencyEnergyConstraintList Yes Object Contains the DFO constraints.

^Table 2.4: Additional sub-attribute for DFOs.

This is how this constraint is incorporated in the message :

"flexOfferProfileConstraints": [{

 "DependencyEnergyConstraintList": [[0 1 5],[0 -1 -5]],

 "priceConstraint": {"minPrice": 0.03, "maxPrice": 0.15},

 "minDuration": 1,

 "maxDuration": 1

},{

 "DependencyEnergyConstraintList": [[0 -1 -5],[0 1 5],[-1 0 -5],[1 0 5],[-1

-1 -6.64],[1 1 7.14]],

 "priceConstraint": {"minPrice": 0.03, "maxPrice": 0.15},

 "minDuration": 1,

 "maxDuration": 1

},{

 "DependencyEnergyConstraintList": [[0 -1 -5],[0 1 5],[-1 0 -6.64],[1 0

7.14],[-1-1 -6.64],[1 1 7.64]],

 "priceConstraint": {"minPrice": 0.03, "maxPrice": 0.15},

 "minDuration": 1,

 "maxDuration": 1

},{

 "DependencyEnergyConstraintList": [[0 -1 -5],[0 1 5],[-1 0 -6.64],[1 0

7.64],[-1 -1 -6.64],[1 1 8.14]],

 "priceConstraint": {"minPrice": 0, "maxPrice": 0},

 "minDuration": 1,

 "maxDuration": 1

}

]

2.5 Uncertain FlexOffers

Uncertain FOs are a type of FOs that take uncertainty from flexibility approximation into

account. There are two main types of uncertainty that are considered: time and amount

uncertainty. For example, suppose that a prosumer wants to recharge an electric vehicle (EV)

https://github.com/flexoffer/flexoffer-specifications/blob/main/Specifications.md#25-uncertain-flexoffers
https://user-images.githubusercontent.com/48982460/211339363-9e656767-4954-4731-bf38-dd2d83218791.png

overnight. At each time unit, time uncertainty refers to the probability for the EV to be

plugged in for recharge at that time, and amount uncertainty refers to the amount of energy

that can be given to/taken from the EV at that time. An UFOs is created in two steps. First,

uncertainty related to the device status is modeled at each time t; second, we calculate the

probability for each energy value at each time to be feasible, taking into account all three

types of uncertainty. We will then obtain some functions {f 1 ,...,f T } describing those

probabilities: those functions will define the UFO. UFOs can be visualized by choosing a

probability threshold P 0 . At each time t, the energy values having probability at least P 0 of

being feasible can be described by intervals. Figure 2.6 shows what happens in the switching

case: with P 0 = 1, the feasible energy values are described by the pink bar; however, if we

choose P 0 = 0.8, the available flexibility is represented by the combined pink and blue bars.

The figure shows that the choice of a value for P 0 generates a SFO: optimization and

aggregation of UFOs are performed by choosing a value for P 0 , and then optimizing and/or

aggregating the resulting SFOs.

Figure 2.5: An uncertain FlexOffer (P 0 = 1 and P 0 = 0.8)

2.5.1 FlexOffer message

We describe the sub-attributes for FlexOfferProfileConstraints in the case of an UFO.

Similarly to DFOs there are new sub-attributes, shown in Table 2.5. It has to be noted that, up

to today, UFOs have never been employed in a real FO message: we define now how this

infomation will be encoded.

https://github.com/flexoffer/flexoffer-specifications/blob/main/Specifications.md#251-flexoffer-message
https://user-images.githubusercontent.com/48982460/211339737-98b53e85-cae8-44e4-a37d-185f5745ef20.png
https://user-images.githubusercontent.com/48982460/211339959-694268b7-9799-41db-89a4-93d9ffb9c916.png

Figure 2.6: An uncertain FlexOffer (P 0 = 1 and P 0 = 0.8)

The UncertainThreshold attribute is a real number P 0 which represent the probability

threshold. UncertainFunctions are functions that are piecewise polynomials, and will be

represented as such. As an example, for the switching case, the functions f 1 ,...,f 4 look like

in Figure 6. For P 0 = 0.95, we represent the UFO by the following message (to be modified):

Attribute Mandatory Type Description

UncertainFunctions Yes ? Define the UFO

constraints.

UncertainThreshold Yes Float Defines the probability

threshold.

Table 2.5: Additional sub-attributes for UFOs.

Example:

"UncertainflexOfferProfileConstraints": [

 {

 "UncertainFunctions": [{g1, g2, g3}],

 "UncertainThreshold": 0.95,

 "minDuration": 3,

 "maxDuration": 3

 }

]

xEMS-FOA exchange protocol

This protocol is not part of FlexOffer. However, an optional library of API/adapters will be

made available open-source to facilitate the adoption of FO. Reference installations will also

be described.

https://github.com/flexoffer/flexoffer-specifications/blob/main/Specifications.md#xems-foa-exchange-protocol

